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Abstract.

.~ The error correction model for a vector valued time series has been
proposed and applied in the economic literature with the papers by ‘
Sargan(1664),Davidson et al.(1978), Hendry and von Ungern-Sternberg(1981) and ;:;
hus been given a formal mathematical treatment by Granger(1983).
irtroduced the notion of cointegratedness of a vector process and showed tre

reiation between cointegration and error correction models.

This paper defines a general error correction model, that encompasses the

usual error correction model as well as the integral correction model by

allowing a finite nusber of error correction terms which correspond to linear {*" :
- et
coubinations of the vector process that are integrated of different order.

It is shown that this structure is inherent in the model if it is given

in autoregressive form or moving average form by exploiting the singularity of t_';ﬂ

the matrix function that defines the model.

The theory is applied to some examples discussed by Davidsoﬁ(1983) and

Harvey(1982).
Key words:

ATMA models.,

Cointegration, error correction, non-stationary time series, R




-, it ol it Lt el el Sull B e e e -
L e ie e Syl A Al S Copizhnt tall el ety SuIC Sal Sl A )

1. Introduction.

Many of the current controversies concerning macroeconomic policy issues,

LR N

particularly monetary questions, seem to derive from different views of the

duration and importance of short-run and long-run behavior of economic agents.

- The fact that these controversies have to be resolved in the empirical arena,
can clearly be demonstrated by a growing number of empirical applications in
which the dynamics of short—-run and long-run adjustment processes are being
modelled. In particular, the idea of incorporating the dynamic adjustment to
long-run steady—-state targets in the form of error correcting mechanisms, in
an autoregressive model for transitory short-run dynamic behavior, originally
suggested by Sargan(1964) and further developed by Davidson et al.(1978),
hendry and von Ungern-Sternberg(198l), Davidson and Hendry(1981),etc. seems to

have intrcduced a useful approach to modelling the dynamics of economic

hahavior.

‘The error correction inodel is a model that combines the autorcgressive

form for the changes in Yy with existing economic theory as expressed in the
long-term static relation Ej*f
(1.1) Ay + Bz =0
or in the steady—-state growth relation
(1.2) Ay + B(z + dz) = 0. i
An example of an error correction model is given by
(1.3) AI(L)Ayt + Bl([.)dzt +D(L)[Ayt_l + BZtHL] = C(L)et.
Applications of this type of models usually have proved very successful
in terms of model fit, meaningful estimates of parameters of interest,

encumpassing, ete. However, for a long time a formal mathematical treatment LN
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scemed to be lacking. Granger(1983) was the first to provide such a basis by

introducing the concept of cointegratedness between time series and relating
that to the concept of error correcting models. The idea of Granger, see also
Granger and Weiss(1983) and Granger and Engle(1985), is to start with a

general nodel for x, = {yt,zt} expressing that 4Ax, is stationary, i.e.

t

(1.4) Axt = C(L)e,t

and then showing that certain properties of the matrix function C(L) imply

t

that the components of x, are cointegrated. This is then used to derive an

t
error correction model. The purpose of this is to explain combinations of the
€’s in terms of deviations in long-term relations between the non-stationary
components of the vector process {xt}, and to identify these long-term
relations using the concep. of cointegration.

The purpose of this paper is to discuss the equations (1.1)-(1.4) and
some related concepts from a mathematical point of view, find their
interrelations, and provide a framework in which their formal analysis can be
Justified.

In doing so the concepts are clarified and generalised. We thus end up
with a very general type of model for a class of non-stationary stochastic
processes. Not all these models correspond to interesting economic models but
thair structure permits a simple analysis and thus helps the undérstanding of
the interesting examples which are discussed in the economic literature.

The paper is now organised as follows :

Section 2 discusses the basic properties of some non-stationary
processes. In particular the role of the starting values and their influence

on the process is discussed.

Following Granger(1983) Section 3 discusses the problem of determining

e g v e gt g ez = e e gt o
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the long-range relations in a system given by the moving average

representation

d,_
a X, = C(L)et,

where d is the order of the process.We derive a general form of the error

LI - N g R

correction model, that allows error correction terms of different order. The
; usual error correction models, see Davidson et al.(1978), as well as the
‘ integral correction models, see Hendry and von Ungern Sternberg(198l) and
Davidson(1983), can be seen as special cases of the general model. Section 4
E discusses formally the same problem, but now based on the autoregressive
representation .
AL)x, = e,
wilere p 1s usually zero.
Conditions for this model to be interpreted as an error correction model
are formulated, and the order of the process is found. In section 5 we

diszenss the special situation where x, is decomposed into endogeneous and

t
exogeneous variables and derive an error correction model for the targetting
error.

In section 6 we show how some examples from the economic literature can
be treated by the general methods developed in the previous chapters, and

Section 7 contains the mathematical results which consist of finding a

representation of the determinant of a matrix valued function in terms of

certain indices defined by the null spaces of succesive derivatives of the

function at L = 1 L

2.

The: basic propertics of o _cluss of non-stutionary processes.
It is customary to consider non-stutionary processes {xt} given by the

corntion
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(2.1) Adxt = c(L)e,

m . . . .
where X and €y € R, and C(z) is an mxm matrix valued holomorphic function

given by its power series with radius of convergence 1 + p, p > 0, and d is an

s T

integer., Here {et} is a sequence of independent identically distributed

random variables with mean 0 and variance matrix I'. Note that the

' coefficients of C(z) decrease exponentially fast, which shows that C(L)c—.t is a
stationary process. 1t is easy to construct xt recursively starting with t =
C, say. This is done as follows: We sum (2.1) from t = 0 to t = T and find
T
B a4 le = A0 lx_l + C(L)Z e,.
t=0
Suaming again gives
R (S VY L R I I T

0<u<s<t

ig t

It is seen that the process x, will be composed of two parts. The first is a

t
polynomial of degree d-1 with coefficients depending on the past values of X

1.0. for t < 0. The second term is a repeated sum of the e’s. We can write

_ ~-d
¥, = C(L) Te, + Pd_l(t).

t
wr call Pd—l(t) the completely deterministic part of X, and C(L)A_det the

random part of x Note that A_l is defined as a finite sum from O to t. The

.
completely deterministic part can be considered a trend in the system showing

the influence of the past, whereas the random part contains the cumulative

effect of the shocks to the system. As a simple example consider the equation

2
e = >
P3| Ng € t>0
The solution is
t
X, = x o+ (tH)dx . + 2 e .
t 1 1 pescust®

Note that the trend part is just a straight line through points {—2,x_2} and

{ 1'x~l} and that conditionally on these valnes x, fluctuates around this

t
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tr.-d with a variance given by

t Ly
Vix, Ix % ) ¢ £ (t=s+1)%V(e,).
R ]

Honooe the variance increases to infinity with t. This is often expressed by
air-iag that the process has infinite variance. A stationary process can be
stuted at "minus infinity"” but a non-stationary process must be started at a
firite time point, and the whole process has to be considered conditionally on
the values before this time, otherwise the process is simply not defined by
th equation (2.1). One can subtract Pd_l(t) from Xy s since the difference
#1:5 satisfies the differential equation, but now with the starting values
ze 0.

This problem has implications for some of the formal calculations often

apnlied to time series. Consider for instance the equation

A% = cnye

>
¢ t > 0.

t ’
I7 v2 sum b times we obtain

ab_ .
A" 7%, = C(L)e, = P (1),

whare Pb_l(t) has coefficients depending on the values of {xt,et} with t <

G.ihus one can cancel Ab, at the expense of adding a trend of order b-1l. One
con also justify the cancellation of Ab as an operation on the random part of
th- process. In the following we shall in some examples be explicit about the
tre l, but the later examples only the random part will be dealt with in
d-t i1,

Next we turn to the notion of cointegration, see Granger(1983).

Definition.2.1. We shall call x, integrated of order d if Xy has the

t
rep: 2sentation

d s s
a4 xt = C(L)et + [b(t)

Wil Pb(t) 15 a completely deterministic polynomial of degree b, and C(1) #




0. In other words Xy is integrated of order d if ddxt iz stationary apart

from a completely deterministic component. Notice that C(1) # 0 implies that

Ad—lx is not stationary.

t
Definition 2.2. Let Xy be integrated of order d. We shall call Xy
cointegrated with cointegration vector a € R" of order s if «’x, is integrated

t
of order d-s.

Thus the order of X, is reduced by s if the combination a’x, is

t
considered.

It is mathematically convenient to allow any vector a« in the definition
ol cointegration. Thus if a = (1,0,0)’ say, then a’xt = Xy We thus express
the fact that some components of X, is in fact integrated of lower order than
the whole vector process, by saying that a certain unit vector is a

cointegration factor. This is clearly a slight abuse of the idea behind

cointegration but it makes the formulation simpler.

-G-
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3. The error correction model derived from the moving averaze

representation.

We shall consider the equation

(3.1) 4% = c(1)e

t t =20,

t 3
and assume that C(z) is holomorphic for |z| < l+p , and is non-singular for
lz] £ 1+p except for z = 1, where we assume that C(l) is singular but # O,

since if C(l) were 0 then a similar model would hold with d replaced by d-1.

Mote that we do not assume that each af the components of x, are imtegrated of

t
the same order. Such an assumption is not necessary for the resulis developed
below, but in connection with the examples this point will be discussed in

more detail. We want to derive an error correction model for x following

£?
the ideas of Granger(1983). We shail first give a general definition of an
error correction model and then give some examples before we prove the main
result.

The ultimate goal of this investigation is to be able to find ihe

properties of a vector process x, from the defining equation in the

t
autoregressive form
= > .

A(L)xt €y t20
The equation, which defines the process uniquely, must therefore cantain
snformation on the order of the process and of which components are
cointegrated. The problem is how to extract this information. If we can find
out, that the order of integration is 2, say, then we can write the equation

in the form

2. _
ont + AAlxt + Az(L)d Xp T o€y

and 4\ x, as stationary error correction terms.

and we want to interpret ont Xt

Thus in order to interpret this as an error correction model we must make sure
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that all terms represent stationary terms and that they have not been
differenced too much. This is made precise in

Definition 3.1 A model of the form

k-l k d
= >

'f a4 Dixt + A(L)4 xt f{L)4 et ,t 20

i=-s
is called a general error correction model of order k if
(3.2) A(z) is holomorphic for |z]| < l+p and A(1) # O
(3.3) AlDixt is stationary, i = -s,...,k-1
(2.4) Xy is integrated of order k
(3.5) f(z) # 80, |z] < l4p. N

The terms 4'D.x,, -s < i < k represent error correction terms with

i"t’

cointegration factors Ei of order (2) k-i, und the term A(L)dkx gives the

t

autoregressive model for the stationary process Akx In general d = 0 but in

¢

son= cases we need a different value. Note that if i ¢ 0 then the term AlDixt

iu @0 integral correction term, i.e. the |i) fold summation from 0 to t of

Di;\'t. :1
Some examples will be given below i
Exoample 3.1. Consider the process (Ct’yt) given by the equations :A

= + -
dog = By, + alyg gmepy) *epy
vy = €gy
Thiie example has been adinted from example 6.1 and is treated in more detail O

in Section 6. It is easily s=en that from the second equation it follows,

Lust Y is integrated of order 1. Now the first equation only makes sense if

¢ 14

L in such a way that y -c

integruted of order 1 as wall, ¢ is integrated of

t

since 1f for instance ¢, were integrated of order 2, then the left

order 0, ¢

haod side would be of order 1 and the right hand side of order 2.  Thus yt and

€, ore cointegrated with cointegration vector o = (1,--1) of order 1, and the

it

e
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model for dc, is given in part by the autoregressive term fdy

¢ and in part by

t

the stationury error correction term Y1 Ce-1"

Thus one can in a simple fashion identify the order of the vector process

(Ct’yt) as well as the autoregressive part and error correction part in this

exuomple. Note that if the second equation is replaced by Azyt = e then the

2t

analysis changes and ¢, and Yy become integrated of order 2 and (yt—c

)

t t

becomes integrated of order 1. In this case the first equation should be
multiplied by 4 before one can identify the autoregressive part and the error
correction part, and then the error correction part is not a linear
combinatien of the components of the process, but a linear combination of the
cononents of the diffrenced process.

Faoe ol 302, A modified version of the previous example is given by the

cepiat Lon

- —_1 —
Agt = det + 84 (yt__1 Ct—l) + €1t
ay = ey
,1 t
vinere A Zy " z 7y A full treatement of a similar example is given in
s-0

Section 6. At this point we shall use it to indicate that it may not be so
cbvious to find the order of the process (Ct’yt) and find out in what sense
thes~ cquations determine an integral correction model. We shall only note
that in general the error correction terms are stationary terms which are
lLin=ar combinations of the vector process differenced a suitable nurber of
tincs. Finally one can combine the two cxamples and consider an equation where

both the error correction term as well s the integral correction term appear.

Thns in general one can have many error correction terms in an error
c.rrection nondel corresponding to Tinear corbinations which are integrated of

different orders. . *
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In order to state the main result about the error correction nodel we
have to define three indices determined by the [function C(z). The necessary
mathematical results are given in Section 7, but here we shall briefly

recapitulate the definitions and results. From the assusptions on C(z) it

- -]
follows that we can expand it around z = 1 in a power series C(z) = Z (l—z)JC‘j
J=0

which 1s convergent for [z-1} < p. The results of this section are formulated
in terms of the cuefficients {Cj}' We now let Nj = {x € le x’C‘j =01}, i.e.
the null space for Cj' We then define the spaces Mj = NO n...n Nj of vectors
viitch are null vectors for all matrices Ci’ i=0,...,J. Let mj denote the

dimension of Mj' Clearly the spaces MJ are decreasing and since C(z) is

assumed to be regular for z # 1 there is no vector x which is contained in
P NJ' Hence there exists a k such that
7 N, 2 vee 2T N, = =...7= 0.
n > “0 nk—l > mk mk+l 0
B L

Nov define n = Z m, = Z m. ond let r be defined by det C(z) = (l—z)rf(z),
3=0 Y =0

wh=re f(z) # 0.
Thus we associate with C(z) the three nunbess (k,n,r) which will be used

rep-atedly in the following. We define Cn(z) by the relation

n-1 .
C(z) = 2 (1-z)%C. + (1-2)"C (2), |z| < lp,
. J n
J=0
aud the adjoint a(z) by
i), . = (-1 Yaer oty

1)
il . . . . .
whore ¢ () is found by deleting row j and colunn 1 from C(z). Tet

N n-1 . )
C(z) = 2 (1-2)Y¢. +(1-2)"C_(2) , }z] < lip.
30 J n

Voo con then formulate

Theorem 3.1, The preocess w0 piven by (3.1) satisfies an autorepressive
) ] t A d

. ‘
i




nodel of the form

k d-jz = d r-n
(3.5) . pal Cn—jxt + Cn(L)A X, = f(L)d e

J=1

t t > 0.

If either En = En(l) # 0 or if r = n this is a general error correction model
of order d.

Proof. Theorem 7.3 shows that we have the following representation

. k-1
, c = kG - 4k Jg 5
i (3.6) oLy = 4" ¢, @) = 4 [jfod Cooee * 4c (1))
and
— _ j__ . ~
(3.7) G, 0L =48 €1, 5=k .

vhere Cj(z) and En(z) are holomorphic in |z| < l+p. Now the equation (3.1)
d~fines Adxt as a stationary process, hence E(L)Adxt is well defined and

stationary and

e ,d _ = - B r
c(Ly4 Ky = C(L)C(l.)et = f(L)d4 €y

witere, by Theorem 7.1, f(z) # 0, |z] < 1l+p. Now use the representation (3.6)

and we get

n-1

[ 2 a9, + 4A"%C (1)]a%, = £(1)d%
5=n—k J n t t
which implies that
(3.8) g 296 4G (La%, = F)at e
: 5=1 n-j>t n t = ! t°

For this equation to be an error correction model we have to check the

conditions (3.2)-(3.5). We know, since C(1) # 0, that », is integrated of

t

order d which shows (3.4). By multiplying (3.1) by En—j and using (3.7) we

-
. et e
C e oS e

gel

, RS i
[ < = .. = Y ¥
(*9) Cpogd "% = Gy (Mey 5 J 7 1 k

_11_
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which shows that Ad—Jén_th is stationary and hence that (3.3) is satisfied.

Since En(z) is holomorphic and f(z) # 0, |z| < l+p we only have to check that

En(l) # 0. Thus if En = En(l) # 0 , then (3.8) is an error correction model,

and if instead we assume that r = n, then it follows from Theorem 7.4

k _
that £ C  .C. has rank m. Now since C
j=p P

0= C(1) # 0 we have Mol # {0}, and

hence there exists A # 0, A e M l. Since the matrices {En_l....,én_k } span

0

HO we find that_
k _ -
0# NEC _C.=NCCy
j=o B3

vhich implies that En # 0 and the Theorem is proved.

The first term in the error correction model is

d-k-
a4 Cn—kxt

vlh.icnh will represent an integral correction term if d < k.
It is seen that if r > n, then a difference 4™ remains at the e’s.

This has the effect that when solving for x,, one has to sum the error

t

correction terms as well as the term Ar—net. The last one will contribute

lezs to the variance of the process than the first one, and in this sense the PN

mwtin contribution to the variance of the process cones from the error
correction terms. Thus one has in fact succeded in explaining the major part - -
ol the e¢’s in terms of interpretable error correction terms. If r = n there

15 o balance between the two kinds of errors, and we therefore call this the

bhictanced case,  We shall see in the examples that both situations can occur -
even in the examples that have been token from the econometric literature. We .
<t ]l alco see that one can alwavs reduce the unbalanced case to the balanced 11

I3

s by introdacing new variables.  This will be discussed in detail in

e i Mo r.A_zan




Section 7, and in connection with the examples 3.4, 6.1 and 6.2.

Example 3.3. Consider the system

. 2
o R R I B
172t | | ' 2t ' [
[*se] [© 240 | %3¢
If we express C(L) as a function of 4, we get
1 0 0] [0 10 ] fo 0 1 ]
_| 2 l _ 2
C(L) =|1 0 0] +4[0-10}+4" 10 0 2| = C0 + ACl + 4 CZ‘
10 0 0] [0 -20} [0 0 0}
1t easily follows that
¢ fob By ©
N, = sp{ }-1];1]0 ;s N.AON =1sp |-1]; N, ANAN, =
0 ! 0 1 0 1 "2
L o) L1) L 1}

and hence my = 2, m = 1, my = ... = 0.

we have r = n = 3.

[as

c(4) = | 0

| —24
o 0 0] fo o0
=4[]0 0 Oj+4]0 ©
-2 2 -2] 0 0
=4 [ C1 + ACZ

The equation now becomes

3, = = 2=
a7 ( Cl + ACz + 4°C

The adjoint matrix becomes

Thus k=2,n=3 and since det C(4) = 24

3

248 34
o -2 |
24 -24 |
0] L[4 -2 3]
-1} #4160 0 0]]
0] (o o o]
2_
+ 4 C3]
_ 3
3]xt = 24 e

Now cancel 4" = A3 and Tind the term corresponding to d = 2 which gives the

autoregressive part of the model. Then
426 X, = —6 X, — 46 X, + 2e
3t 17t 27t t

2

+a + bt + ct

whaere a,b,and ¢ are determined by the values before time t = 0.

Now insert the three matrices Ei and we get

._13_

. e




[ 4x,, -2x,,+3x,, 1] [ 0 ] [0 ] feqd
a2 o2t 3 g g L +a] x| +2] X + p(t)
L 0 I lxgexgetgd L% LB 2
1t 72t 73t 3t
or equivalently
2 -

(3.10) a4 [4xlt—2x2t+3x3t] = Zelt + Sz(t)
(3.11) 2[xlt—x2t+x3t] =~ 2e3t + Qz(t)
(3.12) Axat = 2e2t + Rz(t).

Note that the equations (3.11) and (3.12) are special cases of (3.9)

which express that certain linear combinations are integrated of lower order

than 2. From (3.11) we see that xlt—x2t+x3t is stationary apart from the

trend. Note also that X1t and
integrated of order 1, but the
1 is the same as that in Xy
Thus (3.11) is an example of a
are not necessarily integrated

n =r = 3 and in this case the

02 span Mo s see Theorem 7.4.

Xy, are integrated of order 2 and X)Xy 18
variable that makes xlt—x2t integrated of order
hence X14 XoptXgy 18 reduced to stationarity.

cointegration relation where all the components
of the same order. Note that the example has

rows of C1 span Ml whereas the rows of C1 and

Example 3.4. Let x, be given by the equations

t

]

a
I,

1o
cwy =]  J+al

Lo o

2

and det C(L) = 47. We find N0

i} [ l1+4 -4 ][61t1
L a4 0 Jley,
rr -1 _ o of fo 1j
|+ C(L)=] | + 4] I
L1 o] Lo 1 -1 1)
= sp[?} and Nl = sp {g} , hence MO = NO and Ml

= Nl , giving the indices k = 1, my = 1, my = 0, and hence n = 1, whereas r =

2. Thus we are in the unbalanced case but En = C

3.1. In the equation

E(L)Axt = 4%

1 # 0 and we can apply Theorem

2
t

n . . . 3
we can cancel 4 = A and the resulting equation is a general error correction

.._14.._
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model. The autoregressive part is then given by the terms involving Axt. Yie

then get

.
4
L

fo 1 _ [0 0]
F1 % T o 1%t 4

vihich shows that Xt is stationary and hence that (0,1) is a cointegration

vector of order 1. The last equation is

a4(x + Zde

26710 T gt 2t*

where the left hand side is the autoregressive part of the equation and on the

rigth hand side x,, represents the error correction term and e t the shocks.

2t 2
If we solve this for X0 Xy g then the major contribution to the variance will E‘f;;

t t *
b be the term Xy s since V( 2 xzs) increases, whereas V( 2 dezp) is constant in
s=0 s=0 =

*‘ t. Thus the case r > n can be interpreted as the case where the major

contribution to the variance is given by the error corection terms, whereas
th> shocks only play a minor role. Another way of expressing this is that we
have combined the major part of the shocks into an expression which we can
¢ive an interpretation, namely the error correction term. The case r > n,
however, can be reduced to r = n by transforming the variables into new
variables which are linear combinations of variables of the same order of -
integration, namely

it ©

Yor & Tt

The choice of these new variables is based on an analysis of the matrices {Ci}

such that the variables are linecar combinations of suitably differenced

corponents of Xy This is discussed in more detail in Section 7. -
The equation for the new variables is found by multiplying by the matrix :




. o 28U 48 At ab- g
DR P
PR S

.

and we find
A{ylt] 1 017 144 —A][elt] -1+ -A][elt]

vy d ta il o ofle, ) -4 Al

The relevant matrix functions are now given by

_rir 0 y1-11 210 0]
€ =16 of "o o ™ (a1 1
gy = 10 01 [0 17, 2[1 0]
CL) = 1o 15 ™0 11 M |1 of
and det C(L) = 4°. In this case N, = Sp[g} » Ny = Sp{g} » Ny = Sp{é} » and

hence MO = NO’ Ml = MO = NO n N1 but Hz = {0}. Thus mgy = 1, m = 1, m2 =0
r

which shows that k = 2 and n =
[0 07,-1 [0 1]

= 2. The error correction model looks like

[1 0] _
to 4 e 1o 1%t 1 oj%t T ct.

Th= first two terms represent error corrections and show that d*lth and Yor

-4

are stationary, whereas Y1t satisfies the autoregressive model

dyyy T €3¢ T Yot
B 1
Ay = gy Vor™@ Yor-

These equations are clearly equivalent in view of the representation of Ype 8

a2 function of € The first analysis of this example showed that xzt is in

fact stationary. A fact which is obvious from the defining equation, since

one cun cancel a 4 in the equation for Xo It is probably a good idea to

¢
start out with variables which are integrated of the same order. The second

analysis offers a more interesting point, since we find that not only is y2t =

x2r~dx1t stationary, but in fact integrated of order -1, which shows that

A—lxzt is stationary. We have thus found a cointegration relation between

o

two variables of the same order , X1t and A—IXZt'

_‘-A_“. !

AR
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4. The error_correction model derived from the autoregressive

representation
Let the process {xt,t > 0} be given by the equation
(4.1) A(L)x, = Apet , t 20,
where A(z) is holomorphic for |z| < 1+p and non-singular for z # 1 , but A(}l)

1, A(z)

# We define the coefficients {Ai} by expanding A(z) around z

0.
L]
= Z

(1-z) A » |zl < p. We want to interpret the equation (4.1) as an error
1=0

correction model, see Definition 3.1. For this it turns out that we need to

calculate the numbers (k’,r’,n’) for the transposed matrix function A(z)?*. .

Theorem 4.1. The process xt given by (4.1) is integrated of order less

thuon or equal to r’*n’+k’—p and in the expansion
k’
. r’-n’-p r’-n’+j-p
(4.2) 4 A(L)x =z A A xe Ak,(L)A
J=0

r’'-n’

L __
x’-n’+k Py =f(L)4 €

t t
n11l terms are stationary. If either Kn’—k’ # 0 orr’ = n” then (4.2) is an

error correction model of order r’-n’tk’-p

Proof. It follows easily from the definition of the adjoint matrix, that

(K’ (z)) = (A(z))’ and hence that we have from (7.4)

. _ n’—k"‘
A(L) = 4 A e (1)

and from (7.6)

—_— ',...
AN

(4.3) AL o (L) = Ay U0 d = Lk

Mow nultiply (4.1) by A(L), then we get

) )
fyatx, - a4 KR

t A g (D

which shows that

4 ’ L -
(4.4) FyAT "tk Pse A e (e

17 -
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is staticnary. If Kn,_k,(l) # 0 then %, is integrated of order r’-n’+k’-p.

t

-1 which 1is

If r> = n’, then, by Theorem 7.4, the rows of Zn’—k’ span M

non-empty @nd hence again Kn’—k’ # 0 such that x_ is integrated of order k’—p

t
which proves (3.4).
Now multiply (4.4) by Aj and we get from (4.3) that the first terms of

the expansion vanish, and that

r—n’+k’—p IR S P
a4 f(L)AJxt =4 AJAn’—j(L)et

which shows that

B B
ArnJ

“PA.xt v d=1,...,k
.5 stationary which proves (3.3). Since Ak’ = Ak,(l) # 0 , by the definition

of k’, it follows that we have an error correction model. 1In the case when r’

> n' one may get Kn’—k’ = 0 in which case x, will be integrated of lower order

t
and one may have to cancel some more powers of 4 before the model can be
interpreted as an error correction model, but the condition that Xn’—k’ + 0
ensures that no power can be cancelled and that the results hold.

Example 4.1. Consider the equations

X1¢ 7 ¥or *t ap T 1t
£ . - -
(4.5) d(xlt XZt) €t
It is clear from the second equation, that X1t ¥op is integrated of order 1 ,

and heace it follows from the first equation that 4x is integrated of order

2t

1 and hence that Xot is of order 2. Thus all terms are not stationary, which
means that (4.5) can not directly be interpreted as an error correction model

in the sense of Definition 3.1. We shall give a formal analysis as follows:

e find

4T
|-1+4 -4] |-

1]

1 0}
] -1

A’ (L) 0] + A{ (l)

LiPuiadia e & o o
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giving k’= 1,m '= 1,m1’= 0 and n’ = 1, while r’ = 2. The expansion of

0
y_ 9
at " dA(L)xt now reduces to multiplying through by 4 in the equation

defining Xy and we get

2 _
Alxgpxgy) + dixg, = degy
2 2 _
a4 xlt - 4 x2t = deZt
Theorem 4.1 now gives the order of Xy is less than or equal to r’-n’+k’—p F>ﬁ5:

= 2. Clearly r’ > n’, but it is easy to see that Kn’—k’ =A, # 0, which shows

0
that the order in this case is equal to 2 and that (4.5) has to be multiplied
by 4 to become an error correction model, and that the error correction term
becomes A(xlt—XZt). Thus in order to interprete the equation as an error

correction model one first has to multiply by 4.

5. Grandger causality.

We shall consider the special case of (3.1) where X, = (yt,zt)’ and C(L)

and e, are partitioned accordingly
Lzl =1 o rlle,,]

det P(L) det R(L) and that

..,,.
L,
l'. r C.

H

It is easily seen that det C(L)

- [ P(L) det R(L)  -P(L)Q(L)R(L)]
c(L) = | _ |
L 0 R(L) det P(L)]

Apart from the assumptions on C(z) stated in section 3 we shall assume that

R(z) is non-singular and that P(l) # 0. Then one finds %"—
-1d4 _ ol
R(L) "4 2y = €2t -
and T
d -1 :
5 - = =TI
(5.1) 4 (yt Q(L)R{L) zt) P(L)elt. S

One can define II(L) = ()(L)R(L)~l and let I(1) = I be the impact of z, ony,. f;f%{

We shall call H(L)zt the revealed target and Yy T H(L)zt the target error, see




Kloek(1983). We let (k,n,r) denote the indices for the matrix function P(z),

and get from Theorem 3.1, that if r = n or En # 0 then we have the error

correction model

ko d-js
(5.2) > d Pn_j(y

) - H(L)Zt) + ﬁn(L)Ad(Yt - H(L)zt) = £(L)4" Pe

t 1t°
We shall interprete this equation as follows: From (56.1) it follows that the
target error is integrated of order d, since P(l) # 0. Hence ¥, can be tracked
by the target H(L)zt, such that the difference, the target error, be?omes
integrated of order d. The error correction terms in (5.1) signify that
certain linear combinations of the variable ¥, can be tracked closer, in the
sense that these linear combinations of the target errors are integrated of
lower order, or in other words the target error is cointegrated.
Davidson(1983) compares the dynamic target H(L)zt, relavant for a

steady-state growth world, with the static target Iz, relevant for a static

t
cgulibrium world., He then calls H(L) trend neutral of order m if 11'(L)‘l:‘i = Htj
for j = 0,1,...,m, and derives the restrictions to be placed on the structural
pacameters of the equation system for this to hold.

Let us next assume that the equations are given in the autoregressive

form:

[FI) GWTy,] _ple 1
L 0 HIlzf] ™ legtd

Vi assume that H(z) is non-singular , and that F{1) # 0.
The first equation is
_ AP
F(L)Yt + G(L)zt = d €1t
wiich can be written
5o Y. -1z - AP,
(5.3) F(L)(yttd (L) P(L)G(L)zt) 4 €1t

Here (K7,n°,r’) are the indices for the matrix function F(L)’. Hence the

-20-
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revealed target is

n(L) = -A"r’f(L)"li:(L)G(L)zt

where JI(L) can be replaced by the first terms in the expansion

Pl J p
ML) = 2 40, + 81N (L)
jemgr 9 p

since Hp(L)Apzt is stationary. Now in case r’ = n’ or En’—k’ # 0 the equation

(5.3) gives rise to an error correction model for the target error of the form

K'-1 ., .. o
r-n +3-p 3 _ ) e
jiod Fily, ML)z, ] + Fi» (D) [y, -I(L)z, ] = £(L)4 e

of order r’-n’+k’-p. A simple example of this is given in Section 8.

1t
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6.Fxamples.  Consider the model proposed by Hendry and von
Ungern-Sternberg (1981) and discussed by Davidson (1983).

Exanple 6.1  Let (c

6. t’yt'lt) denote the logarithm of consumption,

disposable income, and personal sector liquid assets respectively. The model

takes the form

(6.1) doy = By, + 1 (Vg7 eey) Ty T g) tegy

(6.2) Ay = 15170 oS

To complete the system we shall add a third equation explaining how Vi is

generated by e Then the equations will have the form discussed in Section

3t°

5 , and we can solve for ct and lt in terms of yt and et. Let

~ 2, N 2
f(L) = A’ll + 47(1 111) 11212](1 4.

We shall assume that f(z) # 0 for 2z # 1. Then we Tind

[ a4+ 111L 112L ] [Ct] - [ Bd + vllL + 712L ]yt + [elt]
L L

i 121L A4 J ltJ 721L 1 [eth
and hence
el [ 4 v b 1T pa+ vl v LT 1
(6.3) | = £ 1) | 2 et I, Rhstay
L1,] L -1y v ot L 15,1 leZtJJ

The first Loerm on the rigth hand side is the target ZI(L)yt and the equation
(6.3) is the target relation. Now different models for Ve will give different
behaviour of N and It’ vie shall consider two cases

Case |:

dy, - g + e

t 3t

which specifies a random walk with drift for Yy and

Case Z:
_ -1 - t
Ayt =g+ d £3t =gt Xoe

2 . . . . .
Loth cases has 4 Yy stationary with zero mean, and since a target relation is

e T, A AT RN
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given up to stationary terms we find that (6.3) reduces to

(6.4) ct = yt = Ayt/v21 + stationary terms

& .- . _ . H . Y .
(6.5) 1t = yt t Ayt((ﬂ 1)121 + 711)/121112 + stationary terms.

1f we now take expectations given the nepative past we get
E(cy) = E(yy) — 8/,
E(1) = E(y) + ((B-Dryy + 71)8/79375
which are the equations one would get by formally letting Ayt = g be
non-stochastic and equating the e’s to zero, see Davidson(1983).
Thus both cases give rise to the same long—-term relations, but it is seen
that in case 1, we have that Ayt - g is stationary, and hence Ve is integrated

oi order 1 and therefore the same holds for ¢ and lt' Thus (6.1) and (6.2)

torm an error correction model with an autoregressive representation of Act,

Alt, and Ayt, where ¢, and lt are cointegrated with Ve such that S and

t

li-yt are stationary and enter the equations with suitable coefficients.

In case 2, however, A2yt is stationary which implies that ¢ and lt are
tutegrated of order 2. Thus by differencing (6.1) and (6.2) we get an

autoregressive representation of Azc and Azlt. Note that in this case ¢

t It

anrl €oy enter only in the differenced form, which shows that the main

o )
contribution to the variance of <, and 1t comes from A'“yt and the error

corraction terms A(lt—y ) and A(ct—yt). Thus the interpretation of (6.1) and

t
(6.2) as an error correction model depends on the model specification for the
exnogenems variable Y

Wwe shall now show how the formal procedures developed in Sections 3-5 can
b applicd to this example.  If we write the case 2 in the autoregressive form

H.6 B SR
(F.6) AL L

wheere x 7 0 (¢, 1

t prigeyy) then
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. adan o aain it ait ] ton Tt

)
. - _. — — ( -
[ryrallzry )y (ed) =y mry okl try o)
ACL) = 1y, (1-2) 4 1 (1) |
| 1 0 0 4° |
[ which by the analysis of Section 4 has kK’ = 1, n® = 1, and r’ = 2, whereas p =
s _ ’ __
(0. Hence Theorem 4.1 shows that we shall multiply (6.6) by UL It
i 1s easily scen that Rn’~k’ = KO # 0, such that the resulting equation gives an

error correction model of order 2, since r’-n’+k’-p = 2. We then obtain the
information from the analysis that A(ct—yt) and A(lt—yt) are the stationary
cerror correction terms. Note that r’ > n' such that we are in the unbalanced
case,

One can reduce to the case r’ = n’ by introducing new variables which are
found by analysing A(L)’, see Theorem 7.5, and the comments at tlie <nd of
Section 7. It turns out that the new variabl:s, in which the problem becomes
Lulanced are

Upp T Gy T Yy MYy /Tgy

gy = 1p vy Ay (rp (B 1)/ 570

11

Uzp © Yt

In terms of the new varinbles the equations now become
-1, 2 _
Tt Yghee bl A T vpdugy — (158 gy Uy = ey
-1, -1, 2 - _
11721 )71z 4 g T et

2
a d3t = e

7.

214

o 7214ult b AuZt + (1 + (B-1+ =

3t

and henes we get an crror correction model with an autoregressive model for
2 . . . .
A Yy explained by the error correction terms which are recognised as the
target errors (6.4) and (6.5H).
If we rodify the equation (6.1) to give an integral correction cquation
fver Y;pt

Y+ g .A"l(y

(6.7) Acg Py v g ey i £17% -1t e

PR Vil VP VPGP W Yol Wl Y e ey s
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which together with (6.2) determines a system of equations for (ct,l ). We

t
solve (6.7) in the form
c, =Y + (4 yt(ﬂ 1) + Aelt)/(d11 + A(vll 611) +A47(1-9

t 11))’

This shows that if Azyt is stationary, then c Ve is stationary, and hence ¢

t

is integrated of order 2, and the target relation is

t

c + stationary terms.

t - Yt
The similar relation for 1t becomes

1 -1

1t = (l—ﬁ)vzldytdll + 4 "e,.. + stationary terms.

2t
The formal analysis proceeds as follows: We multiply through by 4 to

avoid the negative power. We then have an expression of the form (4.1) with d

= 1 and
2 2
[0))+d(7);797,)+47(1-7yy) 02 0,01y )+ (7 8) ]
ALY = | 7, A(1-4) 4 1. A(1-4) |
21 214(}
l 0 0 a4 J

We find k> = 2, n’ = 4, and r’ = 5, but some calculation shows that Xn’—k’ =

A2 # 0. Hence the process (ctLl

’“H’“d’_

t’yt) is of order r'-n’+tk’-p = 2, and we shall

rmultiply through by a5 AO in order that the equation can be

interpreted as an error correction model. We thus find that CLV is a

stationary error correction term which appears with coefficient -@ in the

11

expression for Azct and in the form ~A721(ct~yt) in the equation for dzlt.

Since r’ > n’ we can introduce a new variable, and an investigation of

tiv columns of A(L), or the rows of A{L)’, will show that the new variable is

. - - 2 _
U T o Ty Ay (A D/a

together with 1t and yt. In the new variablea the matrix A becoines

2 X
. . .. . 3 —
[ 01]&4(711 011)+A (1 111) (J'2 A {'ll (llfA(l vl[)](ﬁ 1)/6IL 1
A(L) = ' v,.,4(1-4) a7 VIS B S DU B Wide ,
21 21 q 11
[ 0 0 a J




which is seen to have kX’ = 3, n’ = r’ = 5. Hence the process (ut,l

integrated of order r'-n’+k’-d = 2, and we shall multiply through by aF ~n’-d

=4 1. Thus we shall cancel a factor 4 again and we find that the error

correction terms now are A—lut,u Aut, and Alt which appear in the

t)

. . 2 . o a2 _ .
autoregressive model for 4 Yy Thus we find that u = e Ty, ) yt(ﬂ l)/dll is

in fact integrated of order -1, which means that ¢, can be tracked extremely

t
well by vy + Azyt(ﬁ—l)/dll, in the sense that the error does not accumulate,
t
i.e. the sum of the target errors 2 u has a bounded variance.
s=0

The next example we shall consider is a model proposed by larvey(1982)
for a stochastically varying trend.

Example 6.2. Let the variables yt’mt’Bt’ and Xy be given by the
eguations

yt:m + ax, + ¢

t t 1t
dmy = Byt egt
By = e3¢
My = eqy,
This is an autoregressive model, and we find
[t -1 0 -ai
10 4 1 0|
ALY =16 0 4 0]
Lo 0 0 4}
which has determinant det A(L) = Ag, and hence r’> = 3, and we find k> = 1 and

n’ = 2. Thus we are in the unbalanced case, but it is easily seen, that

= A, # 0. Hence Theorem 4.1 shows that the process is integrated of

An’—k’ 1

S_ .9 __
order r’'-n'+tk’-p = 2, and that a factor of AP o4 nissing in the
equations before they can be interpreted as an error correction model. Then

the term involving A2 will be the autoregressive part and those with 4 the

- 206~
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error correction terms. It then follows that A(yt— mtﬂaxt) and Aﬂt are the
stationary error correction terms, and that the only error correction equation

where anything is corrected is

2 _
a4 mt = Aﬂt + AeZt.

It is seen that the main contribution to the variance of m, is due to the

stationary error correction term Aﬁt. Note that Y and m, are integrated of

t

order 2, and that Y0 is integrated of order 1, whereas ¥y o, is

integrated of order 0.. Hence we have an example where three variables are

T rrey

involved which are not of the same order. %i".
> o
Since r’ > n’ a differencing was needed. It can be avoided by Ef
introducing the new variable u, = Amt~ Bt. The problem is now balanced, and ;;;L
the equations become fﬁj‘
Yo T My T e T 1
Ye T Cat .
Azmt - Aut = eqy
My T gy
In this case k” = 2, n’ = r’ = 3, and the process is of order r’-n’+k’-p = 2. i
Hence the imbalance in A has been removed by the change of variables and the ”;
new equation can be viewed as an error correction model ,where we now get the
information that YoM max, and u, are the stationary error correction terms, L
whereas Xy is the error correction term of order 1. The relevant error
correction model now becomes
Azmt = AuL + €3t L
where now the error correction term contributes less than the shocks to the : El
variation of Yy : :2
7. _Mathematical results o




Consider a matrix valued function C(z) which is defined in an open disc
D= {z; |z] < I+p } in the complex plane. The function is called holomorphic
if the n’th derivative exists for all n, and it is a well known result that
the Taylor series expansion of a holomorphic function at a point z € D
converges in the largest open disc contained in D, see for instance
Thron(19853).

We shall investigate the function C(z) around the point z = 1, and we
assume that the matrix C(z) is non-singular for z # 1, and that C{(1) is

singular, but # 0. We define the coefficients {CJ ;1 J=0,1,... } by the

expansion
w »
c(z) = = (1—z)ch , 11-z] < o
J=0
We shall repeatedly use the fact that if Cn(z) is defined by
n-1 . n
c(z) = 3 (1-z)’¢, + (1-2)"c (2)
. J n
J=0
then Cn(z) is a holomorphic function in D. This follows since the functions
n-1 . -n
c(z), 2 (1—z)JCJ, and (1-z) are holomorphic in' D as long as z # 1. At the
J=0

w .
point 1, however, the function C_(z) has the expansion C_(z) = X (l—z)JC.
n n 520 J+n

|z-1} < p, which shows that Cn(z) is also holomorphic at the point 1. We

want to give a representation for the determinant of C(z) and for 6(2) the

ad,joint matrix defined by

¢, (=) = (-1) et ci(z)

where CJl(z) is obtained from C(z) by deleting row j and column i. Note that

C(z) is also holomorphic since each element is given as a finite sum of finite

products of holomorphic functions.

_:)E'_

’F_.
...

.~ . -
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We define the coefficients {EJ 1 J=0,1,... } by the expansion at z = 1

C(z) = =

(l—z)jéj. We define the null spaces
J=0

.= e @® ’C. =0}, J 0,1,...
NJ { x | x j oo J

and

MJ = NO n Nl n...n Nj'

Then, since C(z) is regular, there is no vector x which makes all C. zero,

hence Mj = {0} for j 2 k, say. Note that Ck must be non-zero, and that Mk—l #

{0}, and that C0 = C(1l) # 0 implies that M0 + A% We shail now define the

w

index n = 2 mj, where mj is the dimension of Mj' The basic idea is that if x
J=0

€ M., then
J

x'C(z) = (1-z)9*} X'C., (2,

since the first j+l1 terms x’C_.,...,x’C. are zero. This corresponds to the
0 J

id~a that x is a coiantegration factor of order j+1, and we shall use this to

evaluate the determinant.

Theorem 7.1. The multiplicity r of the root z = 1 of det C(z) is
sreater than or equal to n, hence there exists a function f(z) # 0, such that
det C(z) = (1-2)"f(z).
Proof. We want to choose a convinient coordinate system to evaluate
the determinant and this is done as follows: From the relation

m . —
K > ”O ] Ml D ... D Mk = {0}

we get an orthogonal decomposition of td
i = Vg t Ve Yy,

where

1 1
=M,  AM. =N. N ...O0N. .,NAN.
VJ J-1 J 0 -1

is of dimension mJ_l—mJ. Note that C(1) # 0 implies that VO # {0} and that

__29_
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the definition of k implies that V

K # {0}.
We define C(z) by x'C(z) = x’CJ(z), for x € Vj, then

(7.1) x'C(z) = (l—z)Jx’C(z) s X € V‘j

where x’C(1) # 0, since x ¢ MJ‘ Thus VJ is the space of cointegration factors

of order .

Now choose a basis {vj; J=1,...,m } for Hm, such that the vectors given

by {VJ; J= m—mi_l+1,...,m—-mi } span Vi. We use the notation m_ = m. We
define the order of v, to be i(j), thus i(j) = 1 if v, € V;. Note that S
max 1(j) = k and that £ i(j§) = 2 i(m, ,-m.) = Zm. = n. From (7.1) we find
. . . i~1 71 LA N
1<j<m Jj=1 1=0 =0

, - 12 1(P) 7
vpC(z)vq = Cpq(z) = (1-2) Cpq(z)

C(z) = diag{ (1-2)*® ;p = 1,...,m} C(2) i}j;ﬁ
and hence that det C(z) = (l—z)ndet E(Z). Now let r be the multiplicity of :
the root z = 1 of det C(z), then r 2 n, since C{1) may be singular. This .. f
conpletes the proof of Theorem 7.1.

Corollary 7.2 For the adjoint matrix we have the result

_ - - . . - - - 4
(7.2) C..(z) = (-1)*det ¢I1(2) = (-1 (1-2) 51 £..(2)
ij Ji
winere f£..(z) # 0 and r., 2 n-p when v, € V .
Jl J1 J p
Proof By deleting the row j with ] € Vp from C(z} we leave out a
factor (1~z)p in the determinant and the index n is reduced by p.
—_— m 3 —
The next result gives a representation of the matrix C(z) = 2 (l—z)JC.
J=0
Theorem 7.3 The coefficients of the adjoint matrix satisfies -
(7.3) EJ =0, J=0,1,...,nk1

and hence
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(7.4) C(z) = (1-2)"* C__, (2)
Further
(7.5) En_J.ci =0,02i<j<k

which shows that

= _ Ja L
(7.6) Cn_JC(z) = {1-z) Cn—jCj(z) , J=1,...,k.

Proof Let us consider the coordinate system {vj; J=1,...,m } from

the proof of Theorem 7.1, and express 6(2) in these coordinates. From (7.2)

we find that rjiz n-p when vj € Vp, but we have n-p 2 n—~k. Thus the smallest

power that cau occur in the expansion of a(z) is n-k, which shows that Ej =0,
J ¢ n-k, and this proves (7.3) and (7.4). To prove (7.5) and (7.6) we will

show that

(C Y (C.) = 0 for all p,q,r and 0 £ i < j < k.

n-j’'pq i'gqr

We then get (7.5) by summing over q. Now if q < mm. then v _e€ V_+ ..

J-1’ q 0
+ Vj—l and rqp 2 n-(j-1). Thus the smallest power in the expression for
c(z)_ is (1-z)" 7D Uhich shows that (C_ .)__ = 0.
Pq n-J)°'pq
. . . . = » -
Similarly if q > mm., i.e vqe Vi+1 +...+ Vk Mi’ then clearly vq Ci

0, and hence (C.) = 0. Now if we take i < j, then mm. € w-m. ,, which
i‘qr i J=1
shows that all q values were considered, and this completes the proof of the

relation (7.5) and (7.6).

The relation (7.5) shows that the rows of En_j are contained in the null

spaces of Ci whenever 1 < j, and in particular that the rows of

Cn-(i+1) " "k

are contained in Mi = N0 n... N Ni' We can now prove
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Theorem 7.4. If r = n then X an—jcj is proportional to the identity and
J=0

the rows of Cn ’Cn—k span Mi , 1 =0,1,...,k-1.

i1ttt

Proof. If r = n then the matrix C(l) is regular, see the proof of

Theorem 7.1. From the relation

C(z)C(z) = det C(z) LI

we find from the fact that C, = ... = C =0and C_C. =0 for 0 < i < J

0 n-k-1 n-j i
< k, that the first possibly non-zero term on the left hand side is
n k _
(1-z) " Z Cn_.C. .
jog P
n k_
and if det C(z) = (l-z) f(z), f(z) # 0, then 2 Cr—icj is proportional to the
j=0 7

identity and hence has rank m.

) . (C

n—j’pq J)

Now consider the terms (6 From the proof of Theorem 7.3 it

qr’
follows that

= <
( n—j)pq 0 for q < mm. ,
and that
(Cj)qr = 0 for q > m——mJ
hence
c_ .C. = ¥ (C_ .) (cC.
( n-j J)pr ( n*J)PQ( J)qf

where the summation is for q such that m‘-m‘j~1 < q=x m—m‘j or vq € Vj' This

shows that the rank of C_ .C. is less than or equal tom. .,-m.. We then
n-jJ J-1 75

evaluate as follows .

k k ~ k
m=rank(Z C .C.) £Zrank(C C.) £Z (n,.,-m,) =m.
AR A R
It follows that equality holds throughout and that .
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raukC . 2 rank(é L.) =m. ,-m..
n-j n-j J J-1 7

This completes the proof, since then
‘ k

m, > rank(C i ysersC )22 (m,
i n—i-1 n-k 5i+l J-1

—mj) =m,
which shows that the matrices on the left span all of Mi'

' If r > n we do not get so complete information, but we shall show below
how the case r > n, the unbalanced case, can be reduced to the case r = n, the
balanced case. The idea is that instead of taking only linear combinations of

i the x’s we allow powers of 4 in the coefficients. We can then prove, that by

transforming the variables we can increase n while keeping r fixeu, and we

thus reduce to the balanced case after at most r-n transformations. A similar

i idea is the starting point for the work of Yoo(1985). If r > u then C(l) is
m -~
singular and we can find a vector a = Z a v_ € H" such that a’C(0) = 0. Let s
p=1
bé the largest j for which a‘j # 0, and define Ta(z) by
I [ v.' , J#s
, ~ s . . J
v; T (2) = la—l 5 (1_2)1(5)—1(p)a v’ .j=s.
S b1 PP

Ve can then prove
Theorem 7.5 The matrix function
Ca(z) = Ta(z)C(z)

has indices (r ,k ), wherer = r, n 2n+ 1, and k 2> k.
a a a a

,n
a' a
Proof. Since det Tq(z) = 1 we clearly have r,=r. For j # s, we have

vJ’Cﬁ(z) = vj’C(z),and it follows that the order of v‘j is the same for Ca(z)

as for C(s). If j = s, then

. i(s)-i(p)
asvs’ca(z) :pfl(1~z) apvp C(z)
s . . . -~ e
-5 (1) )P, (1 HP) agey, J *
p:l P P -




= (1-2)1(8)arc (2.

-~

Hence, since a’C(l) = 0, we get that the order of v is 2 i(s) + 1, which
implies that ka is at least as large as k, whereas n is greater than n.

Let us briefly discuss the relevance of the above formulation for the

theory of time series. The reason that the holomorphic functions play a role

[--]
. . . 1. %k
is that if {zt; — ¢ t { o} is stationary, and if B(z) = I zlﬂi is
i=0
N
holomorphic for |{z| < l+p then the process y, = B(L)z, = Z B.z, . is a
t t =0 1 t-1

stationary process. The coefficients BZ decrease exponentially fast in i,
which shows that the process {yt} is well defined and it is easy to see that
it 13 stationary.

We have throughout considered the matrices as linear transformations of
the row vectors, using the notation v’C(z). This comes from the fact that in
the moving average model (3.1) the change of variable yt = Txt gives the

i relation
Adyt = TC(z)et.
Thus by choosing a suitable T we can change the variables to find a convinient

coordinate system in which to calculate the determinant or, in case T depends

on I, to reduce the unbalanced case to the balanced case.
If the starting point of the investigation is the autoregressive model

(4.1) then the change of variable yt = Tx
1

¢ implies the equation  ~_;*
_ .,"l 11 - d
y, = [T TA(L) ] v, = de,.

Thus the inverse of T’ operates on A(L)'. Now it is easy to see that from the

AT

e
PR R I P

the results of the previous Theorems can be aplied without problems.

) Let us end this section by giving explicitly the transformation of the -
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variables that increases n by at least 1.

If
d _
4 X, = C(L)c—.t
and a’C(1l) = 0, then we can choose Yy = Ta(L)xt as follows
v = |f :Jt ‘ » JE s
Jt L a;1£ Al(s)—l(p)a X+ s J =8 .
p=1 PP
If
_ d
A(L)xt = A4 €y
and a’A(l)’ = 0, then one can introduce the variable Y by
_ -l is)-i(d) . '
[ xjt a A ajxst J <s
y., = |
j i >
Jjt | xjt J 2 s.

Examples of this are given in Section 6.
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